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For the kinetic description of the solid-state reactions, the dependence of the apparent 
kinetic parameters on the sample mass and/or particle size is discussed mathematically in rela- 
tion to some problems on the fractional conversion ix. As for the reaction proceeding according 
to the contracting geometry model, the use of the specific rate constant, independent of the 
sample mass and particle size, is recommended to obtain the sample mass-independent Ar- 
rhenius parameters. It is also pointed out that the distribution of ct within the assembly of 
sample particles disturbs the successful use of (x in the kinetic description of the solid-state 
reactions. 
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Introduction 

The following kinetic equation is assumed for the solid-state reactions [1, 2]. 

dot (1) 
d t -  kaf(tz) 

or 

(2) 

where (x is the fractional conversion, f(tx) is the kinetic model function, derived 
on the basis of the usual physico-geometrical assumptions on the movement of 
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reaction interface under an isothermal condition [2, 3], and kc~ is a rate constant 
depending on thef(a) assumed. In the most traditional case of homogeneous-like 
kinetics theJ(a) function has the common form of ( l - a )  n. Assuming ( l -a )  to be 
the function to represent the simplest chemical event, any additional complication 
due to a more complex reaction mechanism can be understood as a deviation and 
be treated in a quantitative way by the introduction of a multiplication function 
[4], such as ( l -a )  1", a m or In(l-a) p. This is in accordance with fractal-like 
kinetics [5], which is able to describe reactions with the geometrical constrain on 
the basis of the anomalous reaction orders, m, n, orp. It is worth noting, however, 
that the above kinetic description is adequate, in that the a can satisfactorily be 
applied to the solid-state reactions, instead of the concentration term used in the 
real homogeneous kinetics. 

On the other hand, some problems on the use of a have been discussed by 
Criado [6], Fatu & Segal [7] and Blazejowski [8] in connection with the validity 
of the Chatterjee method [9] of the kinetic analysis for the thermal decomposition 
of solids, in which the active weight [10] was used for the kinetic description in- 
stead of a. Chatterjee represented the kinetic equation in the forms of 

_ d_ff_W = kw W (3)  
dt 

and 

n =  
log (--dW/dt)l - log (--dW/dt)2 

log W1 - log W2 
(4) 

where W is the active weight of the reactant remaining at time t, n is the order of 
reaction in the nth-order law and kw is a rate constant. The Eq. (4) was used to 
evaluate the value of n from various thermogravimetric curves recorded for 
samples with different sample weights at a given temperature. 

Criado [6] criticized such a procedure pointing that kw in Eq. (3) depends on 
the initial weight of sample, Wo. In addition, he recommended the use of Eq. (1) 
by assuming that ka is independent of Wo for the nth-order law, f(a)= ( l -a )  n, 
being supported by Blazejowski [8]. Assuming the three-dimensional phase 
boundary controlled, R3, law, Fatu & Segal analyzed the sample mass dependence 
of ka [7], in which they obtained the opposite results to Criado. From the practical 
point of view, we agree to the Criado's criticism on Eq. (4), because the heat and 
mass transfer phenomena would change with Wo. It is necessary here to under- 
stand the relationship between ks and Wo mathematically, which influence the 
other kinetic parameters consequently. 

If the volume of original phase of a sample particle with spherical symmetry 
contracted by moving the reaction interface from the original surface the value of 
tz is defined as 

J. Thermal Anal., 38, 1992 



KOGA et al.: ON THE FRACTIONAL CONVERSION 2555 

~ = ~  
r 3 - r 3 (5 )  

where ro and r are radii of the reactant particle at t=0 and t=t, respectively. When 
the movement of reaction interface is regulated by chemical reaction, the value of 
r is expressed by the following equation: 

r =  ro - k t  (6) 

where k is a constant. Combining Eq. (6) with Eq. (5), we obtain 

1 - (1 - or)  '/~ = k t ( 7 )  
ro 

which is the R3 law in an integral form. We can replace ro with 

(3rno~ '~ (8) 
r~ j 

where mo is the initial mass of one particle and p is the volume density, Compar- 
ing Eq. (7) with Eq. (2), the k<~ for the R3 law can be expressed as 

'/~ (9) 
k~ = k =  ~3(4~--~3 k ro 

Similarly, if the movement of reaction interface was controlled by diffusion, 
the parabolic law is applied for the value of r. 

r = ro - (2KDt)  1/2 (10) 

where K and D are the constant and diffusion coefficient, respectively. Combin- 
ing Eqs (5) and (10), the equation of Jander, D3 law [11] can be obtained. 

[ 1 - (1 - tz)~]2 2 K D  t = (11) 

Comparing Eqs (2) and (11), the term ofka for the D3 law is given as follows: 

k ~ -  ~ - 2  K D  
(12) 

As can be seen from Eqs (9) and (12), the k~ depends on the particle size and 
sample mass for the powder and bulk samples, respectively. The similar relation- 
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ship can be obtained for other kinetic models of contracting geometry, being con- 
sistent with the results of Fatu & Segal [7]. 

Now we define the terms of (4rcp/3)"~k and 2(4rcp/3)V~KD in Eqs (9) and (12) as 
the specific rate constant, ks, which is independent of both the particle size and 
mass of one particle. Assuming the temperature dependence of the Arrhenius type 
on ks, is given by 

ks =A exp(-RE----T ) (13) 

where A is the preexponential factor, E the activation energy, R the gas constant 
and T the temperature. The temperature dependence of ka can be written as 

A E (14) 
ka = ~ exp(-~-~) 

and 

A E (15) 
ko-- 

for the R3 and D3 laws, respectively. Equations (14) and (15) suggest the mo de- 
pendence of the apparent preexponential factor, Aapv, given by A/mo '/~ and A/mo 2"~, 
respectively. It is also noted that Eqs (14) and (15) are valid only for a unique 
value of mo. 

As a mathematical consequence of the exponential form of temperature de- 
pendence of the kit [12], variation of E value is also expected, as given abstractly 
by 

E+AE 1 (16) 
lnA + ~nA - ~ Const. 

T+AT R 

The fact that variation and interdependence of apparent values of In A and E 
arise from the use of ot was exemplified by the isothermal decomposition of 
melted NHaNO3 [13]. It was also shown that the unexpected variation of E is 
avoided by examining the temperature dependence of ks. The above relationship 
indicates that the mo dependence of ka is a possible cause of the kinetic compen- 
sation effect (KCE), being appeared as the effects of particle size and sample 
mass in the cases of powdered and bulk samples, respectively. 

Mathematically, the k~ for the kinetic model of contracting geometry is inde- 
pendent of Wo, when the powdered sample with a unique mo was examined. In 
practice, however, the Wo-dependent variation of the ks was observed [14-17]. 
This seems to be due to the distribution of tx within the sample assembly [18], 
caused probably by the effects of mass and heat transfer [19-23]. The Wo depen- 
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dence of the ka also influences the value of Aapp, in a similar way to Eqs (14) 
and (15). In this respect, the value of t~, which is measured as a certain mean 
value averaged over all the particles in the assembly, is not appropriate to 
describe the kinetics based on the models with geometrical constrains, when any 
systematic and/or unsystematic distribution of r is observed within the assembly 
of sample particles. 

Simple application of the above mentioned equations, proposed originally 
under the isothermal conditions, to any nonisothermal conditions is generally in- 
accurate [2]. Appropriate integration under the nonisothermal conditions [24] re- 
quires temperature-dependent integration limits of the Arrhenius rate constant 
[25, 26] leading to introduction of the so-called p(x) function [1, 2, 27]. Only 
when the approximation of the p(x) is roughly constant, the resultant equations 
are analogous to isothermally derived ones [2, 3], differing only by a multiplica- 
tion constant. This implies that the mathematical explanation for the sample 
mass-dependent values of the kinetic parameters derived nonisothermally is more 
complicated than that for the isothermally determined parameters. At the same 
time, it must be remembered that the larger distribution of o~ could be expected 
for the source of the nonisothermal kinetic data, i.e., thermoanalytical curves. 
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